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Abstract: 

The cascade model is widely applied in water-currents flow calculations. The mathematical 

background of the cascade models is convolution. The convolution, especially in the case of 

continuous functions, is usually solved by Laplace transformation, which is handled with 

considerable difficulty. 

This study principally deals with convolution of series, rather than continuous functions. The 

convolution is traced back to the multiplication of the series’ characteristic polynomials. To 

find a suitable solution for this task, instead of the traditional definition of the linear space, 

more general definition was adopted. According to this adopted definition, the linear 

combination created by elements of module from vectors under addition in a way that the 

external relationship -instead of multiplying the vectors with real numbers- is solved by 

square matrixes. To cast the external relationship into a matrix multiplication form is possible 

because the algebraic structure found in the external relationship sufficient to be “ring” 

according to the general definition of the linear space, and it is not required to be “field” 

(body) as what used to be the common concept in traditional engineering practice. 

The method can be applied on any model that can be described by the linear differential 

equations with constant coefficients. To make it easy to follow each step of implementing the 

procedure it was demonstrated by application on one of the most simple bar structures, that is 

a Kelvin-Voigt type material model of cantilever. 

 

Keywords: cascade model, series, convolution, bar structure. 

 

1. Introduction: 

The cascade model is an easy to handle solution suitable for linear differential equations with 

constant coefficients in their description to different processes. The essence of this method is 

that to find the general solution (2) for the differential equation (1) (Pestel, 1963; Rózsa, 
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1976), the function f(t) being considered to be periodically constant can be taken out of the 

integration process. By so doing, the remaining integrant can be integrated simply and 

independently from the process function: 
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In this paper, the transform from continuous functions to numeric series is presented first, 

then the convolution of series is defined (Biri, 2003; Detrekői, 1991; Graham, 1994; Holnapy, 

2003), and finally the background model is generalized to include differential equation 

system. Instead of considering the usual representation of the linear space, attention was 

shifted to a vector module over ring of square matrixes, figure 3. This arrangement leads 

easily to the ability of modeling the task at hand by the linear combination of the vectors and 

matrixes, figure 6. 

In this developed procedure, due to the fact that the general solution (4) of the differential 

equations system (3) is similar to the solution discussed in (2). Here the emphasis is on 

“system”, so the whole discussion and its logic can be generalized to be applied in 

multidimensional concept. 
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2. Numerical Series and their Convolution: 

Let us have the series (5), which is finite, but can be continued at will: 

 [ ]naaaa ,,, 10 K= . (5) 

Similarly, the series (6) can be defined, and can be considered as a series of answer of unit 

causes:  

 [ ]mbbbb ,,, 10 K= . (6) 

These assumptions are illustrated in the following figure:  
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Figure 1. Succession of sequential unit cause and the series of their reactions. 

 

If equation (5) is considered to be the series of the real causes, then the series of the effects 

can be constructed according to the following arrangement, the effects are illustrated in figure 

2. 
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Figure 2. The real “causes” and the series of their effects. 

 

If we have the continuous functions f(x) and g(x), their convolution can be determined as the 

following (Bronstejn, 1999; Detrekői, 1991; Kármán, 1940): 
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Therefore literature (Graham, 1994) associates the series with characteristic functions (9): 
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Equations (9) have a multiplication polynomial of the form: 
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The series of coefficients of equation (10) is equal to the series of sums in equation (7), and is 

called the convolution of a and b series. This was what led to the decision to consider the 

numerical series rather than the continuous functions (Holnapy, 2003). 

 

3. The Linear Space and the Vector Module Over Ring: 

In mathematics, it is possible according to figure 3, to define a special structure (Reinhardt, 

1977). In this structure internal relationship is understood to be a kind of relationship in which 

two elements (operands) produce third element (value) in a way that the first two elements 

and the third one are all members of the same set (strictly speaking, the relationship is 

understood as operation). In the case presented in this study, in a set of vectors of given 

dimension, the addition is understood as internal relationship or operation. 

External relationship on the other hand, is taken as a kind of relationship in which the 

connection is constructed between elements from different sets (loosely this connection is 
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taken as operation too). Here, it is worthy to mention that determining the linear combination 

of vectors is as if the sum of vectors multiplied by scalar is being constructed.  

The vectors under addition (internal relationship) constitute module (one-operation algebraic 

structure). If another algebraic structure is taken into consideration, let it be the “field” of a 

real number (two-operation algebraic structure), then with the use of these algebraic 

structure’s elements, it is possible to construct the vectors linear combination as an external 

relationship (multiplication). However, there is more general algebraic structure than field 

which was previously used in constructing the external relationship, that is called a “ring”, 

which is a set S together with two binary operators “+” and “·” (commonly interpreted as 

addition and multiplication, respectively) satisfying the following condition: 

1. Additive associativity: For all a, b, c ∈ S, (a + b) + c = a + (b + c), 

2. Additive commutativity: For all a, b ∈ S, a + b = b + a, 

3. Additive identity: There exists an element 0 ∈ S such that for all a ∈ S, 

0 + a = a + 0 = a, 

4. Additive inverse: For every a ∈ S there exists -a ∈ S such that a + (-a ) = (-a) + a = 0, 

5. Multiplicative associativity: For all a, b, c ∈ S, (a · b) · c = a · (b · c), 

6. Left and right distributivity: For all a, b, c ∈ S, a · (b + c) = (a · b) + (a · c) and  

(b + c) · a = (b · a) + (c · a). 

A module taking its coefficients in a ring R is called a module over ring, or a R-module. 

This exactly satisfies the needs of the task at hand if the vectors combination is being 

constructed by the use of square matrixes of suitable order. Here in this study, instead of 

taking into consideration the traditional conception of the linear space, a more “general” 

conception is being utilized in which the linear space is constructed by determining the sum of 

the vectors multiplied by the square matrixes. This “generalized” linear space makes it 

possible to expand number series combination to convolution of matrix series and vector 

series with complete accuracy.  
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Figure 3. The “general” linear space. 

 

 

4. Application of the Procedure on Bar Structure: 

Let one consider the cantilever shown in figure 4. The external force applied on the structure 

produces an internal forces and moments resulting in the displacements of the bar’s endpoint. 

In the case of ideal elastic material, where the Hooke’s law is valid, then the relationship 

between the displacements and internal forces can be written (Gáspár, 2000; Szabó, 1971) as: 
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Figure 4. Cantilever construction and force applied. 

 

 sFu ⋅= , (11) 

F is the flexibility matrix of an l-long constant stiffness cantilever, which in the case of plane 

cantilever is given as: 
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where A is the area of the bar’s cross section, E is the modulus of elasticity, and J is the 

moment of inertia. 

If the bar’s material is of visco-elastic type and the Kelvin–Voigt material law can be applied 

on it, then equation (11) can take the form: 

 sFuu ⋅=⋅+ &tk , (13) 

where u&  is the time derivative of displacement vector, and tk is retardation time. 

The answer function of unit load can be determined by finding the solution of differential 

equation system (13) for the initial condition u(0)=0, in a way that unit loads are applied 

during unit time at the endpoint of the cantilever. 

The loading case and unloading case can be handled at the same time by the help of Heaviside 

function (if t>0 then ∆(t)=1, otherwise ∆(t)=0). 

First, where N=1 kN, (k=103), and Q and M are zero, the equation (13) takes the form: 
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The solution of equation (14) can be given in the following form: 
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Second, where Q=1 kN, and N and M are zero, the equation (13) takes the form: 
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The solution of equation (16) can take the form: 
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Finally, where M=1 kNm, and N and Q are zero, the equation (13) takes the form: 
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The solution of equation (18) then can be given as: 
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It is clear from equations (15), (17) and (19) that it is possible to obtain the answer function of 

unit loads by multiplying the function v(t) by the elements of flexibility matrix, figure 5. 
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Figure 5. Answer of unit load of cantilever’s endpoint. 

 

If the previous discussion is incorporated into the equation system of the state change of the 

bar structures (Gáspár, 2000; Szabó, 1971), then in this case means that the F block has to be 

multiplied by  v(t) function, this is shown in equation (20): 
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In a way suitable for the displacement method, if s vector from the compatibility equation is 

determined and then substituted in the equilibrium equation, the following (21) equation is 

obtained: 

 ( ) qKu ⋅⋅= − tv1 , (21) 

where 

 TGFGK ⋅⋅= −1 . 

Where K is stiffness matrix, G is geometric matrix, q  is nodal reduced load vector and t is 

kinematical load vector. 

The answer series of the unit load is obtained by multiplying the series constructed from the 

function v(t) by the inverse of K The result is shown in (22). 
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In the present case the vector series of real cause is the series of the nodal reduced loads. 
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Finally, the vector series of the displacement is determined by the convolution of the matrix 

series (22) and the vector series (23). The pattern of this convolution is illustrated in figure 6, 

and its calculation can be done using the relationship constructed in equation (24). 
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Figure 6. Linear combination represented by matrixes. 

 

Example:  

Determining the displacement experienced at the endpoint of the cantilever shown in figure 7. 
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Figure 7. Force applied at the cantilever’s endpoint. 

 

Solution: 

The function v(t) can be calculated at a chosen time interval ∆t. 

Let ∆t=1 day and tk= 2 days. 

Let reading the result done through a period of 20 days (e.g. 0-20 day), this arrangement is 

shown in equations (25): 
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Then vt is multiplied by the flexibility matrix F, this will give the answer series of the unit 

loads At. The vector series of the real cause which results from applying the constant loads up 

to the fourteenth day. The application of loads on the structure is ceased after this day: 
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Finally the displacements can be calculated by the help of equation (24). Figure 8 shows that 

the displacements take maximum value on the fourteenth day, and then after this day they are 

going to take the value zero because of the loads are ceased after this date. 
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Figure 8. Displacements taking place at the cantilever’s endpoint. 

 

5. Conclusions: 

Computers deal with discrete situations, for this reason in the case of implementing machine-

based calculations it is worthy to utilize discrete models (abstract algebra) rather than 

continuous analysis. Utilization of series (sequence of discrete elements) makes it possible to 

process the “one after another” arriving measurement results, and in case of necessity to 

intervene in the process. 

In this study, one-dimensional convolution, which is not so common in engineering practice, 

is traced back to the multiplication of series of characteristic function. Here, one of the 

characteristic polynomials was matrix-coefficient polynomial; the second was vector-

coefficient polynomial. With the definition of an expanded linear space, it was possible to 

convert the convolution of matrix series and vector series into a multiplication of 

polynomials. 

The application of the procedure introduced in this study was illustrated in detail on cantilever 

suitable for modeling creep where Kelvin-Voigt material law is valid. Other than this 

illustrated example, the procedure can be applied on any case of linear differential equations 

system with constant coefficients. 
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